(2)反对关系及其推理
具有反对关系的两个命题不能同真(必有一假),但是可以同假。
不能同真,就是说当一个命题为真时,另一个命题必定为假;可以同假就是说当其中一个命题为假时,另一个命题的真假情况不能确定.可真可假。
具有反对关系的命题主要有三组:“所有S是P”与“所有S不是P”:“所有S是P”与“a不是P”:
“所有S不是P”与“a是P”。
如“所有人都去春游”和“所有人都不去春游”是两个具有反对关系的命题。如果“所有人都去春游”这一命题是真的,那么“所有人都不去春游”就一定是假的;如果“所有人都去春游”这一命题是假的,那么“所有人都不去春游”的真假情况不能确定,可真可假。
(3)下反对关系及其推理
具有下反对关系的两个命题不能同假(必有一真),可以同真。
不能同假,就是说当一个命题为假时,另一个命题必然为真;可以同真,就是说当其中一个命题为真时,另一个命题的真假情况不能确定,即可真可假。
简单命题中具有下反对关系的命题也有三组:
“有些S是P”与“有些S不是P”;“有些S是P”与“a不是P”;“有些S不是P”与“a是P”。如“有人去春游”和“有人不去春游”是两个具有下反对关系的命题。如果“有人去春游”这一命题是假的,那么“有人不去春游”就一定是真的;如果“有人去春游”这一命题是真的,那么“有人不去春游”的真假情况不能确定、可真可假。
(4)从属关系及其推理
具有从属关系的两个命题可以同真,也可以同假。
可以同真,就是说当全称命题为真时特称命题也为真,当特称命题真时全称命题的真假不能确定。即可真可假;可以同假,就是说当特称命题假时全称命题一定假,当全称命题假时特称命题的真假情况不能确定,即可真可假。具体如下:
所有s是P→某个S是P→有的S是P:
所有S不是P→某个S不是P→有的S不是P。
在真的方面,特称从属于全称,全称真则特称真;在假的方面,全称从属于特称,特称假则全称假。需要注意的是.这种推出关系是不可逆转的。
如由“所有代表都参加会议”可以推出“有些代表参加了会议”:而由“有的代表参加了会议”并不能必然推出“所有代表都参加了会议”。
当题干出现多个命题,又给出其真假的个数时,可以通过分析这些命题之间存在的对当关系,再绕开具有对当关系的命题,判断其他命题的真假,从而得出答案。具体为“首先找矛盾,一真找下反对,一假找反对,都找不到则假设”。
温馨提示:如果你符合报考教师资格证的条件,不妨考虑去报名吧。若想要了解更多教师资格证试相关的信息,不妨咨询下闽州教育的老师们,他们将为大家细心解答各种问题的,具体的联系方式如下:
报名电话:185-5928-9775(微信号) 林老师
185-5969-5373(微信号) 罗老师
报名地址:闽州教育职业培训中心(厦门市湖里区安岭二路95号红豆杉科技大厦B栋6楼B区闽州教育)
招生网址:www.minzhouedu.com