简单命题及其推理
一、简单命题的分类
简单命题又称直言命题,是断定事物具有某种属性的命题。简单命题是句子结构最为简单的命题,其各部分是不可分割的,且不再包含其他命题。例如①地球是圆的;②刘翔是奥运冠军。这两个例子就是两个简单命题。而“如果你认真学习完这本书,你就能考上公务员”则不是简单命题.因为这个命题可以拆分为“你认真学习完这本书”和“你能考上公务员”两个简单命题.它实际上是我们之后要学习的“复合命题”。
常见的简单命题主要有以下六种:
(1)全称肯定命题
全称肯定命题是断定所有对象都具有某种性质的句子,其逻辑形式是“所有S都是P”。如“所有人都会死”。
(2)全称否定命题
全称否定命题是断定所有对象都不具有某种性质的句子,其逻辑形式是“所有S都不是P”。如“所有孩子都没有哭”。
(3)特称肯定命题
特称肯定命题是断定有的对象具有某种性质的句子,其逻辑形式是“有的S是P”。如“有的学生是好学生”。
(4)特称否定命题
特称否定命题是断定有的对象不具有某种性质的句子,其逻辑形式是“有的S不是P”。如“有的学生不是好学生”。
(5)单称肯定命题
单称肯定命题是断定特定的某个对象具有某种性质的句子。其逻辑形式是“某个S是P”或“a是P”。如“刘翔是运动员”。
(6)单称否定命题
单称否定命题是断定特定的某个对象不具有某种性质的句子,其逻辑形式是“某个S不是P”或“a不是P”。如“小明不是北京人”。
二、简单命题的真假
对简单命题我们是直接以事实为根据来判定其真假。例如“有的动物已经灭绝了”这个命题符合事实,因此为真。
由于简单命题的真假是由其主项(S)和谓项(P)的关系决定的,因此具有相同的主项和谓项的简单命题之间在真假方面也存在着必然制约关系,这种关系就叫作简单命题之间的对当关系.主要包括矛盾关系、(上)反对关系、下反对关系和从属关系。根据对当关系,可以从一个命题的真假推断出与它具有相同主项和谓项的命题的真假。下面分别介绍这几种关系及其推理。
(1)矛盾关系及其推理
具有矛盾关系的两个命题不能同真(必有一假),也不能同假(必有一真)。
不能同真,就是说当其中一个命题为真时,另一个命题必假;不能同假,就是说当其中一个命题为假时.另一个命题必真。
简单命题的六种类型恰好是三组矛盾关系:“所有S是P”与“有些S不是P”:
“所有S不是P”与“有些S是P”:“a是P”与“a不是P”。
如果两个命题具有矛盾关系,则称一个命题是另一个命题的矛盾命题。可以从一个简单命题为真推出其矛盾命题为假,也可以从一个简单命题为假推出其矛盾命题为真。
如“所有的人都去春游”和“有人不去春游”是两个相互矛盾的命题,如果“所有人都去春游”是真的.那么“有人不去春游”就一定是假的。
当直言命题前面加上“并非”时,为负直言命题,与原命题具有矛盾关系。因此,负直言命题与原命题的矛盾命题等值。即:
并非“所有A是B”=“有些A不是B”;
并非“有些A不是8”:“所有A是B”。
并非“所有A不是8”=“有些A是B”;
并非“有些A是B”;“所有A不是B”。
并非“a是B"="a不是B”;
并非“a不是B”;“a是B”。
这两种等值命题之间的转化规律可简记为:“所有”和“有些”互换,“是”和“不是”互换。例如.并非“所有人都去春游”=“有人不去春游”。